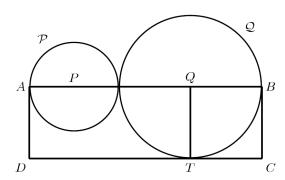

'3. Enunciados de la categoría γ


Gama **2da.**Prueba

22. En la figura los pentágonos regulares y triángulos equiláteros tienen un lado sobre el segmento AY de 18 cm. de manera que DE = EF, JK = KL, PQ = QR y VW = WX (ver figura). Hallar la longitud de la trayectoria formada por los puntos

ABCDEFGHIJKLMNOPQRSTUVWXY

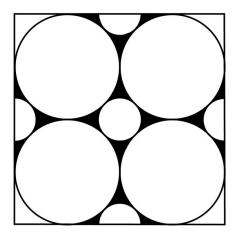
- (A) 54
- (B) 108
- (C) 144
- (D) 106
- (E) 90
- 23. En la mitad de un terreno se siembra haba, en la tercera parte del resto se siembra papa y en las 2/7 partes de lo que queda se siembra choclo ¿Qué fracción del terreno no sembrada con papa, quedo sin sembrar?.
 - (A) 2/21
- (B) 1/6
- (C) 5/14
- (D) 10/21
- (E) 2/7
- 24. Considere la figura, P y Q son los centros de los círculos tangentes \mathcal{P} y \mathcal{Q} , respectivamente. La recta PQ corta al círculo \mathcal{P} en A y a \mathcal{Q} en B como se muestra en la figura. El rectángulo ABCD es tangente al círculo \mathcal{Q} en T. Si el área de ABCD es 15. ¿Cuál es el área del triángulo PQT?

- (A) $\frac{\pi}{2}$.
- (B) $\frac{15}{2}$.
- (C) $\frac{\pi}{4}$.
- (D) $\frac{15}{4}$
- (E) $2\sqrt{15}$
- 25. Consideremos \triangle como una operación entre dos números. Dados dos números x,y la operación triángulo devuelve un número no negativo $x \triangle y$. Se sabe que para cualesquiera números a,b se cumple que $(b \triangle a)^2 = a(a \triangle b)$. Hallar

$$S = 24 \triangle 3$$

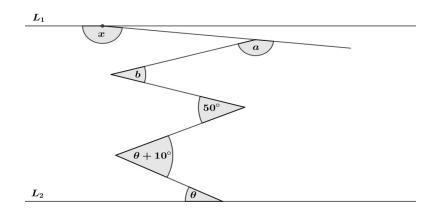
3. ENUNCIADOS DE LA CATEGORÍA γ

18va OPMat



- (A) 5
- (B) 6
- (C) -2
- (D) 3
- (E) No es posible.

2da. Prueba


- 26. Considere el número $E = 4^n + 3^n + 2^n + 1^n$, donde n es entero positivo. ¿Cual es el valor de n para que E no sea múltiplo de 5?
 - (A) 2018.
- (B) 2019.
- (C) 2020.
- (D) 2021.
- (E) 2022.
- 27. Cuatro fichas circulares iguales se tocan entre si, tal y como se ve en el cuadrado de lado a, ver la figura. Encontrar el valor del área de la parte sombreada.

- (A) $\frac{3a^2}{8}(2 2\pi + \pi\sqrt{2})$ (C) $\frac{3a^2}{8}\pi\sqrt{2}$

(E) $\frac{3a^2\pi}{8}$

- (B) $\frac{3a^2}{8}(2+\pi\sqrt{2})$
- 28. En la gráfica se tiene que $a+b=170^\circ$ y L_1 y L_2 son paralelas. Entonces su valor del ángulo x en grados es:

29. Si α y β son soluciones de la ecuación $x^2 + 3x - 3 = 0$. Encontrar el valor de

$$\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2}$$

3. ENUNCIADOS DE LA CATEGORÍA γ

18va OPMat

Gama 2da. Prueba $30.\ {\rm En}$ una reunión social asistieron 8mujeres y 10varones. Todos se saludan entre sí.

- (a) Sea S el número de saludos que se realizan entre todos los presentes.
- (b) Sea P el número de posibles maneras que puede formar parejas (varón y mujer), para iniciar el baile.

El resultado de S-P es:

- 31. Considere el conjunto $A = \{1, 2, 3, 4, 5, 6, 7\}$. ¿De cuántas formas se puede dividir el conjunto A en dos conjuntos tal que la suma de los elementos de cada uno de ellos sea la misma?
- 32. Considere la ecuación cuadrática en x: $t^2-212 = x(x+1)$, esta ecuación tiene dos soluciones enteras distintas. Si t es un entero positivo, hallar la cantidad de todos los posibles valores de t.
- 33. Sean x, y, z números enteros positivos. Hallar la cantidad de soluciones del sistema:
- 34. Considere la siguiente sucesión de números:

$$\frac{20}{21}, \frac{20}{22}, \frac{20}{23}, \frac{20}{24}, \dots, \frac{20}{2001}, \frac{20}{2002}, \frac{20}{2003}$$

La cantidad de fracciones que se pueden simplificar es: